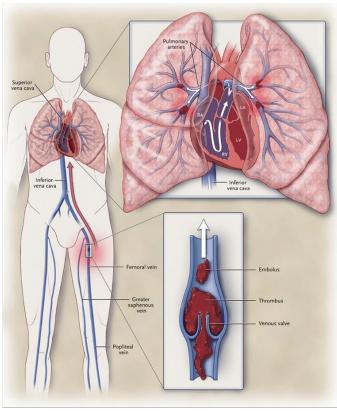


Preparing people to lead extraordinary lives

Association between the thrombin generation potential and thrombin generation markers in PE patients

Priya Ray Loyola University Chicago GTF Fellow (2022)


Background

Pulmonary embolism is when an embolus travels to the lungs and causes a blockage in the pulmonary arteries

- Symptoms:
 - Shortness of breath
 - Chest pain
 - Coughing up blood
- Risk factors:
 - Active cancer
 - Post-surgical patients
 - Post-surgical immobility
 - \circ Smoking
 - Obesity
 - Pregnancy
- Comorbidities:

Preparing people to lead extraordinary lives

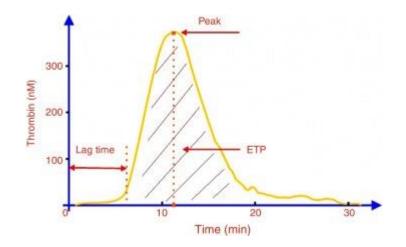
- Chronic heart disease
- Chronic lung disease
- Diabetes

Hypothesis

The hypothesis of this study is that despite the increase in thrombin generation biomarkers, the thrombin generation potential in PE may be reduced

Aim

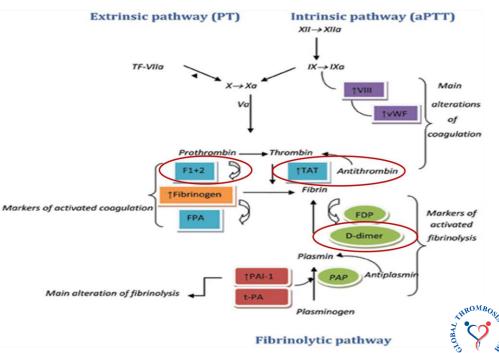
The purpose of this study is to determine the thrombin generation potential in PE patients and its relevance to the thrombin generation markers, such as prothrombin fragment 1+2 (F1+2), thrombin antithrombin (TAT) and d-Dimer



Thrombin Generation Potential

Thrombin generation tests can be used to identify coagulation and potential thrombosis

- Peak thrombin generation: highest amount of thrombin generated at a given time
- Endogenous thrombin potential (ETP): amount of thrombin that can be generated by the plasma after coagulation starts
- Lag time: amount of time it takes for the thrombin to be generated



Thrombin Generation Biomarkers

- Prothrombin fragment F1+2:
 - \circ Prothrombin \rightarrow thrombin
 - Diagnoses thrombosis
 - Marker of thrombin generation & coagulation activation
- Thrombin antithrombin (TAT) complex:
 - Formed by binding AT to thrombin in a ratio of 1:1
 - Activation of coagulation
 - Associated with thrombosis
- D-dimer:
 - Fibrin degradation product, generates after a blood clot is degraded by fibrinolysis
 - Increased levels = coagulation problems

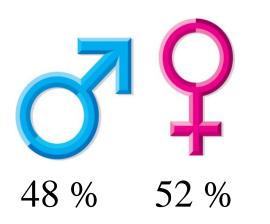
Protease Regulation of Coagulation Process The Central Role of Thrombin

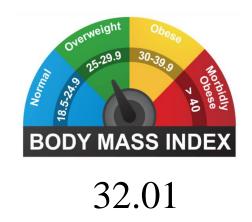
Material and Method

Sample Collection:

- 1. PE patient samples (n=150) within 24-72 hours (Loyola University Medical Center)
- 2. NHP (n=50) control from commercial vendor

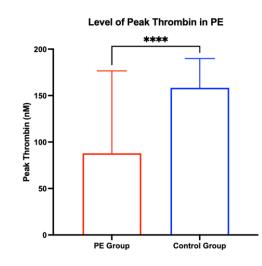
Sandwich ELISA **Biomarker Profiling:** 2 6 1 3 4 1. ELISA TMB Colored a. F1+2 Substrate Product **Biotin Labeled** Streptavidin-HRPO 0 b. TAT **Detection Antibody** c. D-Dimer Fluorogenic Assay 2. Antigen a. Thrombin Generation Capture Antibody **Statistical Analysis:**

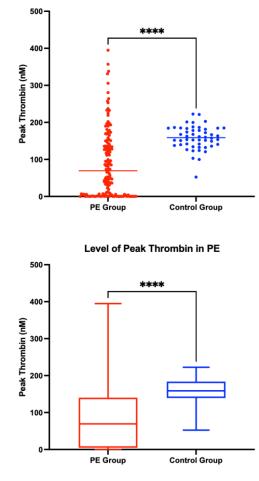

Blocking Buffer


- 1. Mann-Whitney U Test
- 2. Spearman Correlation

Demographics

61.31

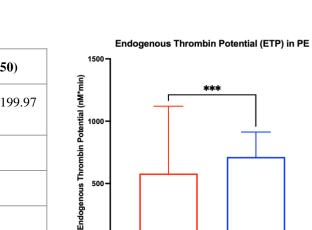


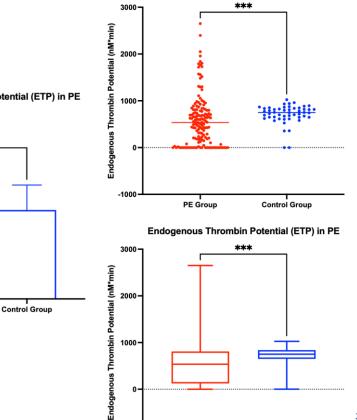


Level of Peak Thrombin in PE

Levels of Peak Thrombin

C- Statistics	PE (n=150)	NHP (n=50)	
Mean±SD	87.94 ± 88.61	158.46 ± 31.46	
SEM	7.24	4.45	
Median	69.26	158.73	
Minimum	0.00	52.35	
Maximum	394.95	222.58	
Range	394.95	170.23	





C- Statistics	PE (n=150)	NHP (n=50)	
Mean±SD	580.43 ± 539.54	713.37 ± 199.97	
SEM	44.05	28.28	
Median	535.51	748.88	
Minimum	-1.00	-1.00	
Maximum	2651.04	1023.32	
Range	2652.04	1024.32	

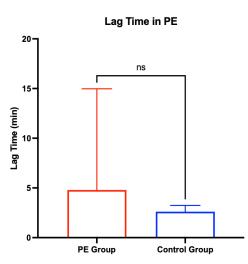
PE Group

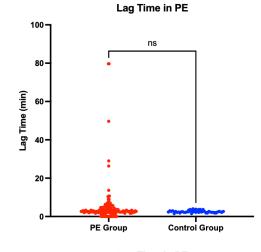
PE Group

-1000

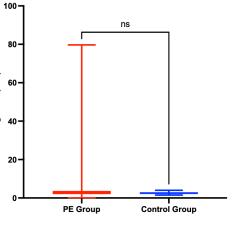
Endogenous Thrombin Potential (ETP) in PE

HROMBOOL

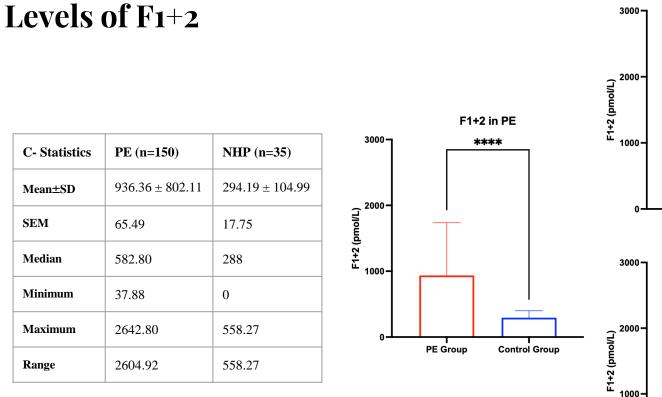

GUOB-

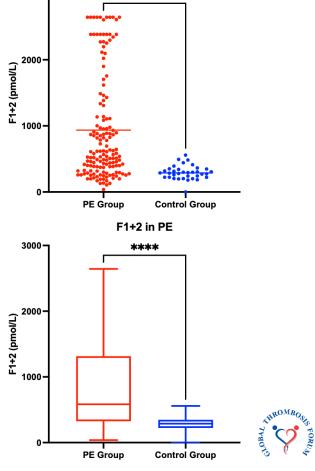

Control Group

FORU

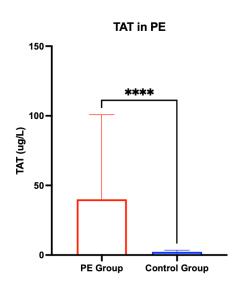

C- Statistics	PE (n=150)	NHP (n=50)	20-
Mean±SD	4.79 ± 10.18	2.61 ± 0.62	15-
SEM	0.83	0.09	Lag Time (min)
Median	2.67	2.48	Lag Tim
Minimum	0.00	1.48	5-
Maximum	79.67	4.00	0-
Range	79.67	2.52	

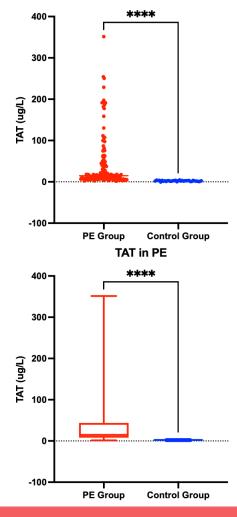
Levels of Lag Time




Lag Time (min)

F1+2 in PE ****

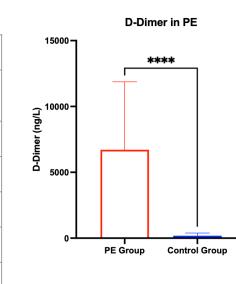

FORUA

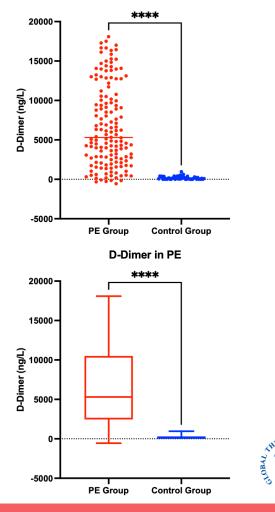


Levels of TAT

TAT in PE

	-	
C- Statistics	PE (n=150)	NHP (n=35)
Mean±SD	40.04 ± 60.76	2.29 ± 1.13
SEM	4.96	0.19
Median	14.71	2.40
Minimum	1.46	-0.46
Maximum	351.35	4.67
Range	349.89	5.13

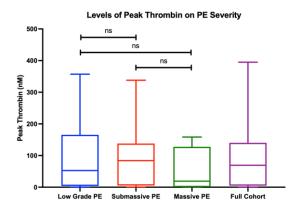


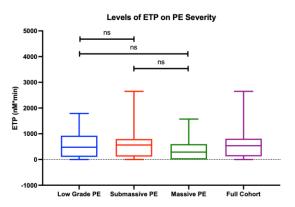


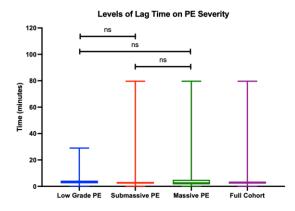
C- Statistics	PE (n=150)	NHP (n=51)
Mean±SD	6715.63 ± 5160.73	182.55 ± 205.77
SEM	421.37	28.81
Median	5302.33	121.71
Minimum	-556.25	0
Maximum	18092.72	960.85
Range	18648.97	960.85

THROMBOS L

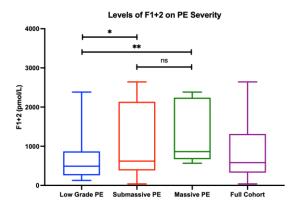
FORUA

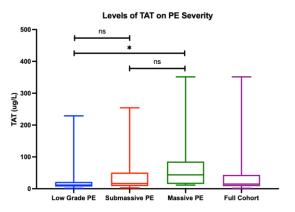


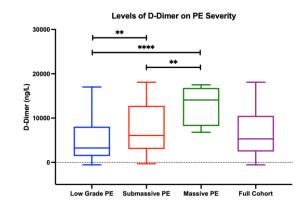

Levels of Thrombin Generation Parameters and Biomarkers in PE Cohort on the Basis of PE Severity


Biomarker		PE Cohort (n=150)	Low Grade PE (n=47)	Sub-Massive PE (n=82)	Massive PE (n=9)
Thrombin	Peak Thrombin (nM)	87.94 ± 88.61	84.32 ± 90.60	90.76 ± 87.25	54.17 ± 65.19
Generation	neration ETP (nM*min)	580.43 ± 539.54	591.87 ± 541.03	588.83 ± 549.24	399.68 ± 504.84
Potential	Lag Time (min)	4.79 ± 10.18	4.22 ± 5.46	4.62 ± 10.13	11.26 ± 25.71
Thrombin Generation Markers	F 1+2 (pmol/L)	936.36 ± 802.11	676.05 ± 565.38	1091.46 ± 896.15	1280.51 ± 775.51
	TAT (ug/L)	40.04 ± 60.76	28.07 ± 45.22	43.45 ± 59.45	75.12 ± 108.31
	D-Dimer (ng/L)	6715.63 ± 5160.73	4858.40 ± 4459.09	7290.82 ± 5262.51	14079.61 ± 4191.49

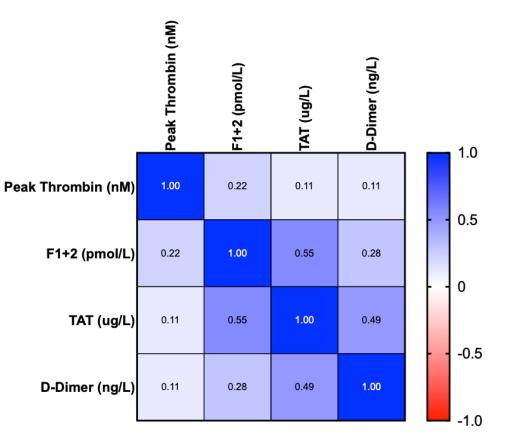
Levels of Thrombin Generation Parameters in PE Cohort on the Basis of PE Severity







Levels of Thrombin Generation Biomarkers in PE Cohort on the Basis of PE Severity



Correlation Analysis

Summary

Variables		PE Group		Control Group		
		Mean ± SD	Range	Mean ± SD	Range	P value
Thrombin Generation Potential	Peak Thrombin (nM)	87.94 ± 88.61	394.95	158.46 ± 31.46	170.23	<0.0001
	Endogenous Thrombin Potential, ETP (nM*min)	580.43 ± 539.54	2652.04	713.37 ± 199.97	1024.32	0.0004
	Lag Time (min)	4.79 ± 10.18	79.67	2.61 ± 0.62	2.52	0.1649 (ns)
Thrombin Generation Markers	F1+2 (pmol/L)	936.36 ± 802.11	2604.92	294.19 ± 104.99	558.27	<0.0001
	TAT (µg/L)	40.04 ± 60.76	349.89	2.29 ± 1.13	5.13	<0.0001
	D-Dimer (ng/L)	6715.63 ± 5160.73	18648.97	182.55 ± 205.77	960.85	<0.0001

Conclusion

- 1. Thrombin generation potential:
 - a. \downarrow Peak thrombin and ETP = consumption of the coagulation factors
 - b. *†*Lag time is due to the delay in the formation of thrombin
- 2. Thrombin generation biomarkers (F1+2, TAT and D-dimer):
 - a. Continuous activation of the coagulation process in the PE patients
- 3. Correlation analysis:
 - a. Peak thrombin is +ve correlated with F1+2
 - b. F1+2 is +ve correlated with TAT and D-dimer
 - c. TAT is +ve correlated with D-dimer as well
- 4. PE Severity:
 - a. Biomarker levels increase as severity increases

b. No difference between Low Grade PE and Submassive PE in parameters, but levels change in Massive PE

Future Plans

- 1. Submit an abstract for the 2023 Experimental Biology Meeting
- 2. Possibly travel to Loyola for St. Alberts Day in October

Acknowledgments

I would like to thank my mentor Dr. Siddiqui, as well as Dr. Laddu, Dr. Fareed, and the rest of the GTF and Hemostasis & Thrombosis Research Laboratory for their support and this opportunity.

References

- Bio-Rad. Types of Elisa. Bio. https://www.bio-rad-antibodies.com/elisa-types-direct-indirect-sandwich-competition-elisa-formats.html?JSESSIONID_STERLING=592C4A43A7779E00A673107CC885D005.ecommerce1&&evCntryLang=US-enthirdPartyCookieEnabled.
- D-dimer test: Medlineplus medical test. MedlinePlus. https://medlineplus.gov/lab-tests/d-dimer-test/#:~:text=D%2Ddimer%20is%20a%20protein,once%20your%20injury%20has%20healed.
- Duarte RCF, Ferreira CN, Rios DRA, Reis HJD, Carvalho Mdas G. Thrombin generation assays for global evaluation of the hemostatic system: Perspectives and Limitations. Revista brasileira de hematologia e hemoterapia. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568585/. Published 2017.
- Lluis M. Martínez SEPMAGCSO. Sandwich Elisa. Sepmag. https://www.sepmag.eu/blog/sandwich-elisa.
- Ota S;Wada H;Abe Y;Yamada E;Sakaguchi A;Nishioka J;Hatada T;Ishikura K;Yamada N;Sudo A;Uchida A;Nobori T; Elevated levels of
 prothrombin fragment 1 + 2 indicate high risk of thrombosis. Clinical and applied thrombosis/hemostasis : official journal of the International
 Academy of Clinical and Applied Thrombosis/Hemostasis. https://pubmed.ncbi.nlm.nih.gov/18160575/.
- Pulmonary embolism. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/pulmonary-embolism/symptoms-causes/syc-20354647#:~:text=Pulmonary%20embolism%20is%20a%20blockage,body%20(deep%20vein%20thrombosis). Published June 13, 2020.
- Rimpo K, Tanaka A, Ukai M, Ishikawa Y, Hirabayashi M, Shoyama T. Thrombin-antithrombin complex measurement using a point-of-care testing device for diagnosis of disseminated intravascular coagulation in dogs. PloS one. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6179255/. Published October 10, 2018.
- Young G, Sørensen B, Dargaud Y, Negrier C, Brummel-Ziedins K, Key NS. Thrombin generation and whole blood viscoelastic assays in the management of hemophilia: Current state of art and future perspectives. American Society of Hematology. https://ashpublications.org/blood/article/121/11/1944/31067/Thrombin-generation-and-whole-blood-viscoelastic. Published March 14, 2013.